A Stream Algal Bloassessment Incorporating the Biological Condition Gradient to Evaluate Tiered Aquatic Life Uses in Maine

Tom Danielson

Maine Department of

Environmental Protection

Stream Classes

% OF LINEAR MILES OF STATUTORY CLASSIFICATIONS

Class AA = 6%

Class A = 45%

Class B = 47%

Class C = 2%

(Class C ~8-10% for large rivers and urban streams)

Maine DEP's Biological Monitoring Unit

- Determine if streams, rivers, and wetlands are attaining aquatic life criteria
- Provide water quality data for many other programs
- >25 years with stream macroinvertebrates.
- >10 years with stream and wetland algae, and wetland macroinvertebrates.

Leon Tsomides
Beth Connors
Jeanne DiFranco
Tom Danielson

Foundations of Algal Model

- Maine's narrative aquatic life criteria
- U.S. Environmental Protection Agency's Biological Condition Gradient (BCG)
 - Davies, S.P. and S.K. Jackson (2006) The Biological Condition Gradient: A Descriptive Model for Interpreting Change in Aquatic Ecosystems. *Ecological Applications* 16(4):1251–1266

Aquadic Life Criteria

as naturally occurs

Class B

support all aquatic species indigenous to the receiving water; no detrimental changes to the resident biological community

Class C

support all fish species indigenous to the receiving water; maintain the structure and function of the resident biological community

Non-attainment (NA) stream does not meet minimum criteria

Biological Condition Gradient (BCG)

Low

Stressor Gradient

High

Class A Stream

Tolerant

1 inch

Class B Stream

meente inemnistilk-noll

Penjajawoc Stream, Bangor

Color Code

Sensitive

Intermediate

Tolerant

1 inch

elqmsE lsglA mseriE

Range of Condition

Ulinimally Disturbed Reference Sites

- >95% of upstream watershed is forest & wetlands
- No point source discharges
- No dams
- No atypical source of pollution (e.g., iron mining)

seignise similadus linuish

Taxonomic Diversity

1999-2008	Stream Samples	Genera	Species/ Forms
	Diatoms	90	806
	Green Algae	59	226
	Cyanobacteria	51	122
	Euglenoids	4	13
	Yellow-green Algae	5	7
	Dinoflagellates	2	3
	Red Algae	4	2
	Chrysophytes	5	4

smited egraeva betrigieW

Brachysira microcephala

Reimeria sinuata

10 20 30 40 50 60 70 80 90 100 Percent Developed Watershed 0.00 0 10 20 3 Percent

Navicula gregaria

Meighted Average Optima

Environmental Variable	
Percent of Watershed that is Forest or Wetland	
Percent of Watershed that is Impervious Surface	
Specific Conductance	
Total Nitrogen	
Total Phosphorous	

smittqO eggrevA betrigieW

Environmental Variable	Tabellaria flocculosa	
Percent of Watershed that is Forest or Wetland	98%	
Percent of Watershed that is Impervious Surface	1%	
Specific Conductance	22 μ S/cm	
Total Nitrogen	331 ppb	
Total Phosphorous	8 ppb	

smite O epsieva beingieW

Environmental Variable	Tabellaria flocculosa	Nitzschia amphibia
Percent of Watershed that is Forest or Wetland	98%	16%
Percent of Watershed that is Impervious Surface	1%	40%
Specific Conductance	22 μ S/cm	475 μS/cm
Total Nitrogen	331 ppb	711 ppb
Total Phosphorous	8 ppb	39 ppb

ni metiteq vojek benitaebl A29 smitqO seiseq2

- Axis 1 represents 86% of variance
- Rescaled axis to 1 (most sensitive) to 100
- Grouped taxa into Sensitive (<32.2),
 Intermediate (32.2-60), and Tolerant (>60).

Candidate Metrica

FROM LITERATURE (Examples)

- Relative abundance
 - motile diatoms
 - polysaprobic diatoms
 - eutraphentic diatoms
 - low oxygen diatoms
 - salt tolerant diatoms
 - dominant species
- Total Richness
- Shannon-Wiener Diversity Index

NOVEL (Examples)

- Relative richness
 - Sensitive taxa
 - Tolerant taxa
 - Brachysira, Eunotia, Tabellaria, and Anomoneis (BETA)
 - Bacillariaceae,
 Catenulaceae,
 Rhoicospheniaceae, and
 Surirellaceae (BCRS)
- Relative biovolume
 - Sensitive taxa
 - Tolerant taxa

Esiniell legila

Spearman rank
 correlation (ρ) = -0.81
 (P<0.001)

- •Mann-Whitney U test statistic = 865
 - χ^2 approximation = 37.830 with 1 df (P<0.001)

eteipoloid of nevip elainetall

- Summary variables and metrics for each sample (n=230)
- Taxa lists with abundances, relative abundances, tolerances, etc. for each sample
- Samples identified by random number
- Only biological data provided
- Report with metric graphs and descriptions

Example of Graphs Provided
to Biologists

Relative Richness of Sensitive, Intermediate, and Tolerant Algae

einemngizel zeelD

- Biologists independently evaluated samples (blind)
 - Maine class (A, B, C, NA)
 - BCG Tier (1-6)

 Biologists later compared results and made consensus assignments.

Biologist Class Assignments

- 105 Class A, 46 Class B, 46 Class C, and 33 non-attainment.
 - 53% unanimous
 - 22% 4 vs. 1 (differed by one class)
 - 20% 3 vs. 2 (differed by one class)
 - 5% differed by more than one class

Discriminant Analysis Model

- Predicts group membership (i.e., A, B, C, NA) based on linear combination of metrics.
- 230 samples
 - 150 used to build the model (training set)
 - 80 used to test the model (test set)
- Metrics selected with backward stepwise selection.
- Identified and removed metrics with high within-group correlations (r>0.70).

150 Correct Model Performance with tenon %60 (051=n) sigo gainist

(Row percents with number of samples in parentineses)

	Algal LDM Predicted Class			
	A	В	C	NA
a priori	97%	3%		
Class A	(67)	(2)		
a priori	3%	90%	7 %	
Class B	(1)	(27)	(2)	
a priori			93%	7%
Class C			(28)	(2)
a priori	-		-	100%
NA				(21)

91% Correct Model Performance with Validation Data (n=30)

(Row pareauthering of samples in parehingses)

	Algal LDM Predicted Class			
	A	В	С	NA
a priori	97%	3%		
Class A	(35)	(1)		
a priori	13%	81%	6%	
Class B	(2)	(13)	(1)	
a priori		13%	88%	
Class C		(2)	(14)	
a priori			9%	91%
NA			(1)	(10)

Watershed Assessment Pleasant River, Windham

BCG is a Crosswalk

BCG Helps Targets Resources

eineplelwonkola.

Funding

- U.S. Environmental Protection Agency
- USGS Maine Cooperative Fish and Wildlife Research Unit

DEP Staff

- Dave Courtemanch
- Leon Tsomides
- Jeanne DiFranco
- Beth Connors
- Susanne Meidel
- Chris Halsted
- Mike Smith (now with OGIS)
- >50 interns, conservation aides, Americorps, and volunteers

Partners

- Houlton Band of Maliseet Indians
- Manomet Center for Conservation Sciences

PhD Committee (UMaine)

- Dr. Cynthia Loftin, advisor
- Dr. Francis Drummond
- Dr. Susan Brawley
- Dr. R. Jan Stevenson (Michigan State University)
- Dr. Dave Courtemanch (Maine DEP)